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Abstract

Nonlinear dynamics deals with parametric resonances and
diffusion, which are usually beam-intensity independent
and rely on a particle Hamiltonian. Collective instabilities
deal with beam coherent motion, where the Vlasov equa
tionisfreguently used in conjunctionwith abeam-intensity
dependent Hamiltonian. We address the questions: Arethe
two descriptions the same? Are collective instabilitiesthe
results of encountering parametric resonances whose driv-
ing force is intensity dependent? The space-charge domi-
nated beam governed by the Kapchinskij-VIadimirskij (K-
V) envelope equation [1] is used as an example.

1 INTRODUCTION

Traditionally, the thresholds of collective instabilities are
obtained by solving the Vlasov eguation, the dynamics of
which comes from the single-particle wakefiel d-dependent
Hamiltonian. The Vlasov equation is often linearized so
that the modes of collective motion can be described by a
set of orthonormal eigenfunctions and their corresponding
complex eigenvalues givetheinitial growth rates. The per-
turbation Hamiltonian A H; may have atime-independent
component, for example, the space-charge sdlf-field that
determines the potential-well distortion of the unperturbed
particle distribution, and the part involving the nonlinear
magnetic fields, that gives rise to the dynamical aperture
limitation. It may also have atime-dependent component,
which includes the time-dependent effects of wakefields
and produces coherent motion of beam particles. The har-
monic content of the wakefields depends on the structure of
accelerator components. If one of the resonant frequencies
of the wakefields isequal to afractional multipleof the un-
perturbed tune of unperturbed Hamiltonian Hy, aresonance
isencountered. Depending on the stochasticity of the phase
space, particles may be trapped into the resonant islands or
diffuse towards resonant structuresfar away forming beam
halos or getting lost. Thismay result in arunaway situation
such that collective instability isinduced.

Experimental measurements indicate that a small time
dependent perturbation can create resonance isands in
the longitudinal or transverse phase space and profoundly
change the bunch structure[2]. For example, amodul ating
transverse dipole field close to the synchrotron frequency
can split up a bunch into beamlets. Although these phe-
nomena are driven by beam-intensity independent sources,
they can aso be driven by the space-charge force and/or
the wakefields of the beam which are intensity dependent.
Once perturbed, the new bunch structure can further en-
hance the wakefields inducing even more perturbation to
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the circulating beam. Experimental observation of hystere-
sisincollectivebeaminstabilitiesseemstoindicatethat res-
onance idlands have been generated by the wakefields.

For example, the Keil-Schnell criterion [3] of longitudi-
nal microwave instability can be derived from the concept
of bunching buckets, or islands, created by the perturbing
wakefields. Particlesin the beam will execute synchrotron
motion inside these buckets leading to growth in the mo-
mentum spread of the beam. In fact, the collective growth
rate is exactly equa to the angular synchrotron frequency
inside these buckets. If the momentum spread of the beam
ismuch larger than the bucket height, only asmall fraction
of the particles in the beam will be affected and collective
instabilitieswill not occur. Thismechanism has been called
Landau damping.

Asaresult, webelievethat the collectiveinstabilitiesof a
beam may al so be tackled from a particle-beam nonlinear-
dynamics approach, with collective instabilities occurring
when the beam particles are either trapped in resonance is-
lands or diffuse away from the beam core because of the
existence of a sea of chaos. The advantage of the particle-
beam nonlinear-dynamics approach is its ability to under-
stand the hysteresis effects and to calculate the beam dis-
tribution beyond the threshold condition. Such aprocedure
may be able to unify our understanding of collectiveinsta
bilitiesand nonlinear beam dynamics. Here, thestabilityis-
sues of a space-charge dominated beam in a uniformly fo-
cusing channel are considered as an example [4].

2 ENVELOPE HAMILTONIAN

First, the envelope Hamiltonian is normalized to unit emit-
tance and unit period. In terms of the normalized and di-
mensionless envel ope radius R, together with its conjugate
momentum P, the Hamiltonian for the beam envelopein a
uniformly focusing channel can be written as[5, 6]

1
H.= 4—P2 +V(R), (21)
7I
2
B pk. R 1
=R ln—+ — 2.2
VIR) = G - T+ gz (22

where p/(27) is the unperturbed particle tune, x =
Nra/(n3%~?) the normalized space-charge perveance, N
the number of particles per unit length having classical ra-
diusr., and 8 and v therel ativisticfactorsof thebeam. The
normaized K-V equation then reads
d’R w2 2uK 1
e (%) b=tor T @3
Theradius Ry of thematched beam envel opeor core occurs
at the lowest point of the potentid;i.e., V/(Ry) = 0, or

1
N P (2.4)
From the second derivative of the potential, the small am-
plitude tune for envelope oscillationsis therefore

pRE = VK2 4+ 14k =

ge|iwJio-

0002 BNBny 1-48€/66-JU0D-9V 11INY3H



2.0

1.9

— —
N o
[T

Enevelope Tune Q. in units of w/2m
&

2 3 4
Rimex/Ro

Figure 1. Envelope tune Q. versus envelope mismatch

Ruax/Ro for various space-charge perveance . Notice

that Q. is represented by v, a Rax/Ro = 1 when the

beam envelopeis matched.

v _2 [1—/{ (\/ H2+1—H)] e

=5 (2.5)

which approaches /7 and v/2u/(27) as « approaches O
and oo, respectively.

For a mismatched beam, R varies between R, and
Rumax- TO derive the tune of the mismatched envelope, it
isbest to go to the action-angle variables (J., v.). The en-
velope tune and action are then

Q.= 2?: =VetQedet-, Je:% %PdR. (2.6)
where F, is the Hamiltonian vaue of the beam envel ope,
and thedetuning cv,, defined by H, = veJe+3aeJ2+- - -,
is computed to be
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To obtain the envelope tune for large mismatch, one must
compute numerically the action integral to obtain

Qe_dEe:%[ oP

—1
= a—EedR] :

The envelope tuneis plotted in Fig. 1 as a function of the
maximum envelope radius R,., Which, for smal mis
match, isrelated to the envelope action J,. by

J.\ /2
R:Ro+( e) cos Q0 .

2.7)

(2.8)

TV

3 COLLECTIVE-MOTION APPROACH

Gluckstern, Cheng, Kurennoy, and Ye [7] have studied the
collective beam stabilities of a space-charge dominated K-
V beam in auniformly focusing channel. The particle dis-
tribution f is separated into the unperturbed distribution f;
and the perturbation f;:

flu, v, 0,9 ;0) = fo(u? +0* 402 +0%) + f1 (u, v, 0, ; 0)

where v and v are the normalized transverse coordinates
which are functions of the ‘time’ variable . Their deriva-

tives with respect to time are denoted by « and ©. The un-
perturbed distribution,

Jow? +0* +u* + @2)=I—02

VT
is the steady-state solution of the K-V equation (2.3) and
is therefore time-independent. In the notation of Gluck-
stern, Cheng, Kurennoy, and Ye, I isthe average beam cur-
rent and v, the longitudina velocity of the beam particles.
The perturbed distributiongenerates an el ectric potential G,
which is given by the Poisson’s equation

V3G (u,v,0) = —;/du/dizfl(u,v,u,z);&), (3.1)
0

so that the Hill's equations in the two transverse planes
become

S(u? +v? 4 +02-1),

el O0G . B
movie Ou’ vhv= movie v
where e stands for the transverse emittance of the beam and
mg the rest mass of the beam particle.

For small perturbation, the perturbation distribution is
proportional to the derivative of the unperturbed distribu-

tion. Thisenables usto write

f1(u, 0,0, 0;0) = g(u, v, 0, 0; 0) fi (u* o> Ha*4?) . (3.3)
Substituting into the linearized Vlasov equation, we obtain
dg  .0g .09 Jg OJg 2 [ oG .GG]
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Noting that the potential G is a polynomial, Glucksg'rﬁ),
et. al. are able to solve for g and G consistently in terms
of hypergeometric functions. Thus a series of orthonor-
mal eigenmodes are obtained for the perturbed distribution
with their corresponding eigenfrequencies. These modes
are characterized by (4, m), where j istheradia eigennum-
ber and m the azimuthal eigennumber.

For the azimuthally symmetric m = 0 modes, (1,0) is
the breathing mode of uniform density at a particular time
while the (2,0) mode oscillates with aradia node between
R = 0and R = Ry so that the density becomes nonuni-
form. The higher modes are similar, with mode (4, 0) hav-
ing j — 1 radial nodes. When the eigenfrequency of amode
is complex, the mode becomes unstable with a collective
growth rate. Stability is studied in terms of tune depres-
sion n=+/k2+1—« and the amount of envelope mismatch.
The former is defined as the ratio of the particle tune with
space charge to the particle tune without space charge for a
matched beam. Thus ; ranges from0to 1; » = 1 implies
zero space chargewhilen = 0 impliesinfinitespace charge.

Gluckstern, et. al. showed that mode (1,0) is stable for
any mismatch and tune depression. Mode (2,0) becomes
unstable at zero mismatch when the tune depression n <
1/4/17 = 0.2435. It is aso unstable when the mismatch
islarge. Thisis plotted in Fig. 2 with the stable regions
of modes (2,0), (3,0), and (4,0) enclosed, respectively, by
the solid, dashed, and dot-dashed curves, a reproduction of
Ref. 4. Theselatter two modesbecome unstableat zero mis-
match when the tune depressions are less than 0.3859 and
0.3985, respectively. They found that the modes become
more unstable as the number of radial nodes increases.
Among al theazimuthals, they noticed that theazimuthally
symmetric modes (m =0) are the most unstable.
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Figure 2: Beam stability plot versus particle tune depres-
sion i and beam envelope mismatch. The stability regions
for modes (2,0), (3,0) and (4,0) are enclosed, respectively,
by the solid, dashed, and dot-dashed curves. (Reproduced
from Ref. 4).
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4 PARTICLE-BEAM APPROACH

4.1 Particle Hamiltonian

Wewant to investigatewhether theinstability regionsin the
plane of tune depression and mismatch can be explained
by nonlinear parametric resonances. Firgt, let us study the
transverse motion of aparticle having zero angular momen-
tum. The situation of finite momentum will be discussed
later in Sec. 6. We choose y as the particle' stransverse co-
ordinate with canonical angular momentum p,,. lts motion
is perturbed by an azimuthally symmetric oscillating beam
core of radius R. The particle Hamiltonianis[6]

1 2 2 2/,1/1‘{
Hy = v+ 'y = o v O(R = [y)
20
e (1 +21nu> Oyl - R), (4.2)
T R
giving the equation of motion for y,
Py (2 WK Lk
a2 \ox) 7T - = 9(yl-R).
d92+(277') y 2772R2y@(R |y|)+277'2|y| (|y| )
(4.2)

For aweakly mismatched beam, theenveloperadiusis R =
Ro+ARcos Q6. TheparticleHamiltonian can a so be ex-
panded in terms of the equilibrium envelope radius Ry, re-
sulting H, = H,0+AH,. The unperturbed Hamiltonianis

Lo, 2, 24
Hyo = vy + -0 = R2 y> O(Ro — |yl)
2uk Iyl
1+21n - R 4.3
2 (e e - ry. 6
and the perturbation
MK AR , 2
AH, ~ —(W*—R
p~ 7TRO [Ro (y 0)
3AR?
+ e (V= 3RE) | O(Ro—yl) . (44)
2R2

Note that many non-contributing terms, like the ones in-
volving the §-function and ¢’-function, have been dropped.
Additionally, envelope oscillations do not perturb particle

motion outsi de the envel ope radius; thus the perturbing po-
tential in Eq. (4.4) exists only inside the envel ope.

For a matched beam, AH,, = 0. Inside the core of uni-
form distribution, the particle motion is linear and its tune
can be readily obtained:

1/2
1% 2K 1% (
=2 (1 === = (/K2 1—).
T or ( MR?)) or (VLT
Thus, n = Vk2 + 1 — k isthetune depression.
When the particle spends time oscillating outside the

beam envelope, its tune has to be computed numericaly.
First, the particle action is defined as

1
Ty = 5= foudy. (45
The particle tune @, isthen given by
dE, Opy !
=2 P — 4.6
Q=T |foa| . @

where E,, is the Hamiltonian value of the beam particle.
The result is shown in Fig. 3 for various space-charge per-
veance k. We see that when the particle motion is com-
pletely insidethe beam envelope (J, < %),theparticletune
is a constant and is given by v, depending on ~ only. As
the particle spends more and more time outside the beam
envel ope, its tuneincreases because the space-charge force
decreases as 3y~ ! outside the envelope.

4.2 Particle Tune Inside a Mismatched Beam

To simplify thealgebra, itisadvisableto scale away theun-
perturbed particle tune 1./ (27) through the transformation:
uR? — R?, uy? — 32, and pf/(27) — 6. The envelope
and particle equations become

d’R 2k 1
== — 4.7
i d92+R R (4.7
d*y 2K
“y) = = “R)=0. (4
02 TV ng@(R lyl) ; O(ly|-R) =0. (4.8)

For one envel ope oscillation period, the envelope radius R
is periodic and Eq. (4.8) inside the envel ope core becomes
a Hill's equation with effective field gradient K(0) = 1—
2k/R?(0). The solutionisthen exactly the same asthe Flo-
quet transformation by choosingy = aw(0) cos [¢(9) + 4].
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Figure 3: Particletune ), as function of particle action J,

and space-charge perveance « for amatched beam.
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Itis easy to show that the differential equation for w is ex-
actly the envelope equation of Eq. (4.7). Thus we can re-
place w by R, and R? becomes the effective betatron func-
tion. Since the particle makes @,/ Q. betatron oscillations
during one envel opefluctuation period, where @), isthe par-
ticletune, we have

Q, Ay 1

do
Q. 21 %% R2(0) (49)

In Floguet's notation, with j = y/R, Eq. (4.2) describ-
ing the motion of aparticle modulated by abeam envel ope
becorgas ,
T Lt okR? [y - 1] (g -1)=0. (410
di? 7
Thus, al particles inside the beam envelope have a fixed
tune depending on the amount of space charge and envelope
mismatch. Particles spending part of the time outside the
beam envelope will have larger tunes. The Floquet trans-
formation can aso be accomplished by a canonical trans-
formation employing the generating function
o YPy | yR'(9)
where the prime denotes derivative with respect to 6. The
new Hamiltonian in the Floquet coordinates becomes

+

(4.11)

1 (3.y:0) = gy 0P+55) +( ~In3®) O(17|—1) .

(4.12)

For asmall mismatch core fluctuation, we can write R =

Ro(1—M cos Q.0), where M can beinterpreted asthe mis-

match parameter. Theintegral in Eq. (4.9) can be performed
analyticaly to give

Vp
Qp = ESYBEE (4.13)
where v, = R;? = Vk2+1 — & is the particle tune

when the envelope is matched. The analytic formula of
Eq. (4.13), however, is only valid when the mismatch pa-
rameter M < 0.2. Thereason isthat the envel ope equation
isnonlinear in the presence of space charge. In other words,
while minimum envelope radiusis given by Ry, = (1—
M) Ry, the maximum envelope radius is always Ry,.x >
(1+ M)Ry. Infact, when M — 1, Rypin — 0, but
Rpax — oo. This can be seen in top plot of Fig. 4 with
(Rmax — RQ)/RQ versus M = (RQ — Rmax)/RQ. If the
envelope oscillations were symmetric about Ry, the plot
would follow the 45° dashed lineinstead. We see that the
deviation is large when the mismatch and tune depression
arelarge. Whentheapproximation R = Ry (1—M cos Q.6)
breaks down, the particle tune can still be easily evaluated
by performing the integral in Eqg. (4.9) numerically. The
lower plot of Fig. 4 shows the deviation of the actua par-
ticletune @, fromits analytic formulaof Eq. (4.13).

5 PARAMETRIC RESONANCES

Particle motion is modulated by the oscillating beam enve-
lope. Therefore, to study the resonance effect, we need to
include the perturbation part A H,, of the particle Hamilto-
nian. We expand it as a Fourier seriesin the angle variable
1, yielding, for example,
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Since AH,, iseven in y, only even n_harmonics survive.
The particle Hamiltonian then becomes

o0
H m
H, = Hp0+—27’:R3 S (1) M™ G| %

m=1 n>0
even

X Z cos(np +imQe0+vn) + - -,

where v, are some phases and use has been made of R =
Ro(1—M cos Q.0), the approximation for small mismatch.

Focusing on the n:m resonance, acanonica transforma-
tion to the resonance rotating frame (1, ¢,) gives

m
<Hp> = Ep(Ip) - EQeIp + hnm(Ip) cosngy , (5.3)
with the effective «-dependent resonance strength
(m+ 1)M™uk
= T a_po nm . 4
ham = =5 (G- (64)
As usud, there are n stable and n unstable fixed points
which can be found easily. Since AH,, is a polynomia up
to y? only and y o sin ¢, we have, inside the envelope,

1
Gnm, = me5nQ 5 (55)

implyingthat only 2:m resonances are possible. Outsidethe
envel ope the resonance driving strengths can aso be com-
puted, and are plotted in Fig. 5. We see that although the

(5.1)

(5.2)
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Figure5: Plot of driving strengths of first-order resonances
G,1 versusparticleaction J,. Insidetheenvel ope (J, < %),
only G2; isnonzero. Once outside the envel ope, however,
|Gn1| for n > 2 incresses rapidly from zero.

driving strengths G,,; for n > 2 vanish insidethe envelope
(Jp < %), they increase rapidly once outside. Including
noises of al types, particlesinsidethe K-V beam envel ope
can leak out. Thissituationisparticularly truewhenthe par-
ticle tuneis equa to a fractional multiple of the envelope
tune. A small perturbation may drive particles outside the
beam envelope. Once outside, because of the nonvanishing
driving strengths, these particles may be trapped into reso-
nance islands or diffuseinto resonances farther away. Once
trapped or diffused, they cannot wander back into theenve-
lope core. As more and more envelope particles leak out,
the core stabilizationis lost and an instability occurs.

Our job is, therefore, to map out the location of para
metric resonances in the plane of mismatch and tune de-
pression. Because particles are affected only by resonances
when they arejust outsidethe envelope core, their tunes are
essentially the tuneinsidethe beam envelope. At zero mis-
match, thethreshold for then:m resonance can therefore be
derived by equating v, /v. to m/n. Thus

Y _ VIEHLTE o™ (5
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In particular, for the 6:1 resonance, x>8/+/17=1.9403, or
the tune depressionisn < 1/4/17 = 0.2425, which agrees

with Gluckstern’sinstability threshold for mode (2,0).

For a mismatched beam, the threshold for the n:m reso-
nance is obtained by equating @),/ Q. a that mismatch to
m/n. These resonances arelabeled in Fig. 6in the plane of
tune depression and mismatch. The locus of the 2:1 reso-
nance isthe vertical linen = 1. Thisisobvious, because
at zero space charge the particle tune is exactly two times
the envelope tune regardless of mismatch. Also, it isclear
from Eq. (4.10) that there will not be any Mathieu instabil-
ity or haf-integer stop-band [8]. Thus it appears that the
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Figure 6: Plot of parametric resonance locations in the
plane of tune-depression and beam envelope mismatch.
First-order resonances are shown as solid while second- and
higher-order resonances as dashes. Overlaid on top are the
instability boundaries of modes (2,0), (3,0), and (4,0) de-
rived by Gluckstern, et. al.

2:1 resonance would not influence the stability of a space-
charge dominated beam. Thisis, infact, nottrue. Thestable
fixed points of the 2:1 resonance are usually far away from
the beam envelope. Thus particles can diffuse towards the
2:1 resonance to form beam halo. As more and more par-
ticles continue to diffuse from the beam core into the 2:1
resonance, the beam becomes unstable.

Trackings have been performed for particles outside the
envel ope core using thefourth-order sympl ectic integration
developed by Forest and Berz [9]. The Poincaré surface
of section is shown in Fig. 7A for the situationn = 0.20
(k=2.4) and M =0.3, corresponding to PointsA in Fig. 6.
The innermost torus is the beam envelope. The sections
are taken every envel ope oscillation period when the enve-
loperadiusisat a minimum. For each envelope oscillation
period, 500 to more than 1000 time steps have been used.
We see that as soon as particles diffuse outside the beam
envelope, they will encounter the 6:1 resonance, which is
bounded by tori. This explains the front stability bound-
ary of Gluckstern'smode (2,0). Sincethe4:1resonanceisa
strong one, itslocus explains the front stability boundaries
of Gluckstern’s (3,0) and (4,0) modes al so.

The Poincaré surface of section corresponding to
Points B of Fig. 6 withn = 0.10 (x = 4.95) M = 0.15 is
shown in Fig. 7B. This is a close-up view showing only
the region near the beam envelope; the 2:1 resonance and
its separatrices are not shown because they look similar
to those depicted in Fig. 7A. We see resonances like 14:2,
8:1, 16:2, 9:1, 10:1, etc, which are so closely spaced
that they overlap to form a chaotic region. Particles that
diffuse outward from the beam envelopewill wander easily
towardsthe 2:1 resonance along its separatrix. Thisregion,
wheren < 0.2, istherefore very unstable.

Figure 7C shows the close-up Poincaré surface of sec-
tion of Points Cin Fig. 6 withn = 0.44 (x = 0.916) and
M = 0.25. Here the particles see many parametric reso-



Figure7: Poincaré surface of sectionin particlephase space (y, p). Plot A iswith (n, M) =(0.20, 0.30), Plot B (0.10, 0.15),
Plot C (0.44, 0.25), Plot D (0.30, 0.10), Plot E (0.50, 0.60), Plot F (0.90, 0.10), corresponding, respectively, to Points A,
B, C,D, E,FinFig. 6. Thelast 5 are close-up plots, showing only up to the unstable fixed pointsand interna separatrices
of the 2:1 resonance.

nances when they are outside the beam envelope; first the
10:3, followed by the 6:2, 8:3, 10:4, and then achaoticlayer
going towards the 2:1 resonance. The resonances are sepa-
rated by good tori and the instability growth rate should be
small. Thus, thisisthe region on the edge of instability.

On the other hand, the Poincaré surface of section in
Fig. 7D corresponding to Points D of Fig. 6 withn = 0.30
(x = 1.517)and M = 0.10 shows the 6:2 resonance well
separated from the 10:4 resonance with awide area of good
tori. Also thewidth of the 10:4 resonance is extremely nar-
row so that particlescan hardly betrapped there. Unlikethe
SituationinFigs. 7B and 7C, thereisno chaoticregion at the
unstable fixed pointsand inner separatrices of the 2:1 reso-
nance, making diffusiontowardsthisresonance impossible.
Thisregion will berdatively stable.

Next consider the region with very large beam envelope
mismatch like Points E of Fig. 6 withn = 0.50 (x = 0.75)
and M = 0.60. (Theother PointEisat Ryax/Ro = 2.067
andisthereforenot visiblein Fig. 6). The close-up Poincaré
surface of section in Fig. 7E shows the beam envelope ra
diusat y = 0.566 when p, = 0. We can see that the un-
stable fixed points and the inner separatrices of the 2:1 res-
onance are very close by and are very chaotic. As soon as
a particle diffusesout to y = 0.62, it reaches the chaotic
sea and wanders towards the 2:1 resonance. Because the
chaotic region is so close to the beam envelope, thisregion
of large mismatch isal so unstable, which isGluckstern’sre-
gion of instability at large mismatch.

Finally, we look at Points F of Fig. 6, which have small
space charge k = 0.0106 or = 0.90 and small mis-
match M =0.10. The Poincaré surface of section is shown
in Fig. 7F. The beam envelope is surrounded by good tori
far away from the separatrices of the 2:1 resonance and no

parametric resonances are seen. Thisis evident also from
Fig. 6 that thisregion is not only free from primary reso-
nances but also many higher-order resonances. The unsta-
ble fixed points and the separatrices of the 2:1 resonance
are well-behaved and not chaotic. Thus, these points are
very stable. If we keep the same space-charge perveance
and increase the amount of envelope mismatch, we also do
not see in the Poincaré surface of section any parametric
resonances between the beam envelope and the separatri-
ces for the 2:1 resonance. However, athough the separatri-
ces of the 2:1 resonance are not chaotic, they become closer
and closer to the beam envel ope. When the separatrices are
too close, particles that are driven by a small perturbation
away from the beam envel ope will have a chance of travel-
ing along the separatrices of the2: 1 resonanceto form beam
halo. From our discussions, it is clear that to avoid insta-
bility and hal o formation, the beam should have small mis-
match and be in aregion that is far away from parametric
resonances in the plane of mismatch and tune depression.
The best solution for stability is certainly when the beam
has small mismatch and small space-charge perveance.

The deep fissures of the (2,0) mode near n=4.7 and 5.3
in Fig. 2 or 6 are probably the result of encountering the
10:3 and 6:2 parametric resonances. The width of the fis-
sures should berelated to thewidth of theresonanceidands,
which can be computed in the standard way. In generdl, a
lower-order resonance island, like the 4:1, is much wider
than a higher-order resonance island, like the 6:1.

Wetried very hard to examine theregion betweenthe 4:1
and 10:3 resonances with amoderate amount of mismatch.
Wefoundthisregionvery stableunlessitisclosetothe10:3
resonance. We could not, however, reproduce the dlits that
appear in Gluckstern’s (4,0) mode.



6 ANGULAR MOMENTUM

Most K-V particles have nonzero angular momentum.
When angular momentum isincluded in the discussion, we
first extend the particle Hamiltonian of Eq. (4.12) in Floquet
notationsto both the = and y transverse planes:

1 o o .2, -
= o (@ + 9 + 2 +5y)
+r[E2 497 —In (22 +92)]0(@*+9* —1). (6.0)
It is preferable to use the circular coordinates (7, ) asin-
dependent variables; their canonica momenta are, respec-
tively, p, and p,,. The particle Hamiltonian becomes

~2

1
Hy= s <f2+ﬁ?+ &> + (72 7#2) ©(7-1), (6.2)
where 72 = 32 + §2 and
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Extending the generating function in Eg. (4.11) to include
the x coordinates, it is straightforward to show

r=R7¢ and Py, = TPy — YPr = TPy — Ypz - (6.4)
Thusp,, istheangular momentum of the particle, whichisa
congtant of motion. Sinceit hasthesame functiona formin
both coordinatesystems, itsoverhead accent ™ will nolonger
be necessary. Particles belonging to the unperturbed K-V
distribution are therefore subjected to the restriction

P}

r5)
1/2

o 12 1-p2\°

2= ( ) -kl 69

ThusaK-V particle has an angular momentum restricted by
)

ol < 2o < L (67)
which agreeswith theresult of Riabko[6] that 2.7, + |p,| =
1, where J,. istheradial action. The equation of motion for
the particleradial positioninside the beam coreis

o ph 0

e
where the Floquet phase advance diyp = df/R? has been
used. Noticethat thisis exactly the same as the envelope
equationin Eq (4.7) with k = 0. We proved in Sec. 2 that
the envelope tune is exactly twice the particle tune when
k — 0. Hence, comparing with the equation of motion of a
zero-angular-momentum particle in the presence of a mis-
matched space-charge dominated beam, i.e,, Eq. (4.10), we
can conclude that the particle radia tune inside the beam
core is exactly twice the zero-angular-momentum particle
tune for any space charge and mismatch.

Simulations have been performed for the time evolution
of the radial motion of a beam particle and then compared
withthetimeevol ution of thetransverse motion of aparticle
with zero momentum. One of the ssimulationsis shown in
the upper plot of Fig. 8. The particleisaK-V particlewith
angular momentum p,, = 0.3 satisfying theK-V restriction
of Eq. (6.6) inamismatched beam envelopewith M = 0.30

H,y

(6.3)

P4pr+ 5 =1, (6.5)

from which we obtain
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(6.8)
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Figure 8: Plotsshowing thetimeevolution of theradial po-
sition r of aK-V particle in solid inside a beam envelope
with nonzero p,, mismatch A/ = 0.30 and x = 2.059
(n = 0.23). Theevolutiony of ap, = 0 particleis shown
in dashes. The simulation is at the 6:1 resonance for the
p, = 0 particle. Top plot shows the radial motion with
pe = 0.30 which istwice as fast as the oscillating motion
of ap, = 0 particle. Lower plotisfor p, = 0.50. Now
the particle radius r is related to the envelope radius R by
r = +/|po|R = R/+/2, giving afase impression that the
radial tune becomes equal to the envel ope tune.

having atune depression of = 0.23. We seethat the shape
of oscillationsof r shown as solid is very similar to that of
y with zero angular momentum shown as dashes. Since r
does not go negative, its tune appears to be twice the tune
of a zero-angular-momentum particle. This plot was per-
formed near a 6:1 resonance for a zero-angular-momentum
particleand it therefore trand atesinto a 3:1 resonance for a
nonzero-angular-momentum particle.

It is interesting to point out that as [p,| — 3, the
humps that exhibit in the time evolution of the radial mo-
tion become more pronounced and thetime evol ution even-
tually becomes proportional to the envel ope oscillation, as
isdemonstrated in lower plot of Fig. 8. Now theradial tune
appears to change suddenly to the envel opetuneinstead. In
fact, thisis easy to understand. The equation of motion for
the particleradial positionis

r”—l—rzgr—l—%. (6.9)
Compared with the envelope equation (4.7), it is evident
that r = /|p,|R is asolution. In the Floguet represen-
tation, Eq. (6.8) aso reflects such a solution. Thus, it is
apparent that the radial tune can assume two different val-



ues. This ambiguity can be resolved by investigating the
Poincaré surface of section of theradia motion. IntheFlo-
guet coordinates, thetrgjectory isrepresented by one point,
7 = +/|p,| and p, = 0. Inthe (r, p,) coordinates, the
Poincaré surface of section is also asingle point since the
phase-space position of the particleisplotted only every en-
velope period. In fact, from Eq. (6.2), the Hamiltonian in
the Floquet representation, it is clear that the solution 7 =
v/ |p,| isthelowest point of theradial potential. Thisisthe
equilibrium solution which, in the case of aHill’sequation,
is equivalent to a particle traveling along an orbit passing
through the centers of al elements. Therefore, evenin this
solution, the radia tuneis not equal to the envelope tune,
but remains twice the tune in the Cartesian coordinates.

Because of the above discussion, al the n:m parametric
resonances that we studied in Sec. 5 just trand ate into the
5 .m resonances in ar-p, Poincaré surface of section. As
a result, the stability investigation in the previous section
should hold even when particleswithfiniteangular momen-
tum are included.

7 CONCLUSIONS

We have now an interpretation of the collective instabili-
tiesin the plane of envelope mismatch and tune depression
through the particle-beam nonlinear-dynamics approach.
Because of the existence of noisesof al typesintheaccel er-
atorsand theK-V eguationisfar from realistic, some parti-
cleswill diffuse away from the K-V distribution. Although
these particles may encounter parametric resonances once
outside the beam core, an equilibrium will be reached if
these resonances are bounded by invariant tori. It may hap-
pen that the island chains outside the beam envelope are so
closetogether that they overlap toform achaotic sea. When
thelast invariant torusbreaks up, particlesleaking out from
the core diffuse towards the 2:1 resonance, which is usu-
ally much farther away from the beam envelope, to form
beam halos. As particles escape from the beam envelope,
the beam intensity insidethe envel ope becomes smaller and
the equilibriumradius of the beam core shrinks. Thus more
particleswill find themselves outside the envelope. Asthis
process continues because no equilibrium can be reached,
the beam eventually becomes unstable.

It ispossiblethat many collectiveinstabilitiescan be ex-
plained by the particle-beam nonlinear-dynamics approach.
The wakefields of the beam interacting with the particle
distribution produce parametric resonances and chagtic re-
gions. Instabilitieswill be the result of particlestrapped in-
sidetheseresonanceislands. The perturbed bunch structure
further enhances the wakefields to induce these collective
instabilities of the whole beam.

Sofar, we have been ableto explain theresults of Gluck-
stern, et. al qualitatively. However, there are differences
guantitatively. To the lowest order, the Vlasov equation
studied by Gluckstern, et. al. doesinvolvethe perturbation
forceinduced by the perturbation distributionviathe Pois-
son’'s equation. In our nonlinear-dynamics approach, the
particle that escapes from the beam envel ope core, dways

sees the Coulomb force of the entire unperturbed beam
core, independent of any variation of the core distribution
duetotheleakage of particles. Thisisduetothefact that the
envelope Hamiltonian and the particle Hamiltonian have
been treated separately. This leads to a dependency of the
particle equation of motion on the envelope radius, but not
the dependency of the equation of motion of the envelope
radius on the particle motion. We believe that thisis the
reason why we have not been able to compute the growth
rates of the instabilities. However, an improvement of the
present model isnontrivial. Thisis not the problem of one
particle interacting with a beam core in such away that the
perturbation of the beam core can be neglected, because a
beam core that is not modified cannot lead to instability of
any form. To treat the problem properly, the Hamiltonian
will have to include undoubtedly all the beam particlesin-
teracting with each other, from which the time evol ution of
the beam coreisto be determined. Thisappearsto beavery
complex problem, and thisis exactly why the Vlasov equa
tionisintroduced. TheVlasov equationisatime-dependent
differentia equation of the beam core or beam distribution
and requires only the single-particle Hamiltonian. Thus, it
appears that the Vlasov equation will be unnecessary only
when the beam particle distribution does not play an essen-
tial role, for example, in theissues of Robinson instability,
thetwo-particlestrong head-tail instability, thetwo-particle
chromaticity-driven head-tail instability, etc.
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